r^2+1/5=13

Simple and best practice solution for r^2+1/5=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for r^2+1/5=13 equation:



r^2+1/5=13
We move all terms to the left:
r^2+1/5-(13)=0
determiningTheFunctionDomain r^2-13+1/5=0
We multiply all the terms by the denominator
r^2*5+1-13*5=0
We add all the numbers together, and all the variables
r^2*5-64=0
Wy multiply elements
5r^2-64=0
a = 5; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·5·(-64)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*5}=\frac{0-16\sqrt{5}}{10} =-\frac{16\sqrt{5}}{10} =-\frac{8\sqrt{5}}{5} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*5}=\frac{0+16\sqrt{5}}{10} =\frac{16\sqrt{5}}{10} =\frac{8\sqrt{5}}{5} $

See similar equations:

| c2=13 | | -3.4=d5 | | 250-5^2x=0 | | 7d–8=41 | | X^2+y=28 | | 1-(1/k^2)=0.36 | | x–3.4=9.61 | | 1. x–3.4=9.61 | | 3(f+3)+5=17+4f | | 12÷45=n÷60 | | 25+3x=x+3 | | -19=w/2-7 | | 5(x•2)=6x+3 | | 4.2x+9=3(1.2x+4) | | x/5=36/4 | | y+2/3=2y+4/2 | | 375=80x | | 0.1x-0.8x-62=1 | | 4x+2x-5=x+35 | | 375=40x | | 3a=B=225 | | )3+4x-8-2x=3x+7 | | 350=14x | | 4x=7+ | | 15=3.14x | | 2x-3÷4+6=-1 | | 0.8x+x=198 | | -98+28x+6x^2=0 | | 28=28n-7n^2 | | x^2-2x+4=67 | | 7n^2+28n-28=0 | | 3x+7=2x-8-6x |

Equations solver categories